Incremental emotion recognition
نویسندگان
چکیده
Most emotion recognition systems do not perform real-time emotion recognition due to latencies caused by phrase segmentation and resource-intensive feature acquisition, etc. To address this issue, we present an emotion recognition approach that can estimate speaker emotions with much lower latency. The proposed approach does not rely on phrase-level features to recognize speaker emotion; rather, it estimates the speaker’s emotional state over the course of the utterance incrementally, using a shifting n-word window on the basis of easily computable features. These features are obtained from three information streams, i.e. cepstral, prosodic and textual, at the wordlevel and combined at decision-level using a statistical framework. Our work shows that combining the three information streams yields higher emotion recognition accuracy than any single information stream. Using features extracted from n-word sequences rather than phrases provides for the low-latency capabilities of the proposed system, without any loss in utterance-level emotion recognition accuracy. The performance of the proposed system on a binary utterance-level emotion recognition task using an in-house database shows a relative improvement of 41% over chance, compared to a relative improvement of 31.82% shown by the baseline phrase-level emotion recognition approach.
منابع مشابه
Statistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language
Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملExploring Emotion Recognition Patterns among Iranian People Using CANTAB as an Approved Neuro-Psychological Assessment
Background: Emotion Recognition is the main component of social cognition and has various patterns in different cultures and nationalities. The present study aimed to investigate emotion recognition patterns among Iranians using the Cambridge Neuro-Psychological Test Automated Battery (CANTAB) as a valid neuropsychological test. Methods: In this descriptive-analytical study, 117 males and fema...
متن کاملTesting the Model of attachment, Facial Emotion Recognition, Emotion Regulation, Emotional PerspectiveTaking, and Depression in Female Adolescents
Objective: Depression is a growing public health problem, which needs more consideration in primary care settings. By focusing primarily on developmental psychology, attachment style is one of the most influential variables on the risk of internalized disorders. Although attachment styles have strong effects in emotional aspect of human mental life, emotional turbulence and dysfunction are cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013